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Abstract
Digital soil mapping (DSM) at high spatial resolutions over 
large areas often demands considerable computing power. 
This study aims to harness the heterogeneous computing 
resources on multi- core central processing units (CPUs) 
and graphics processing units (GPUs) to accelerate DSM 
by implementing PyCLiPSM, a parallel version of the 
iPSM (individual predictive soil mapping) algorithm which 
represents the type of geospatial algorithms that is data-  
and compute- intensive and highly parallelizable. PyCLiPSM 
was implemented in Python based on the PyOpenCL 
parallel programming library, which runs on any operating 
system and exploits the computing power of both CPUs and 
GPUs. Experiments show that PyCLiPSM can effectively 
leverage multi- core CPUs and GPUs to speed up DSM 
tasks. PyCLiPSM is open- source and freely available. Using 
PyCLiPSM as an example, we advocate implementing parallel 
geospatial algorithms using the PyOpenCL framework to 
harness the heterogeneous computing resources available 
to researchers and practitioners for accelerated geospatial 
analysis.
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1  | INTRODUC TION

Soil maps characterizing spatial variations of soil properties (e.g., soil carbon) or soil classes inform environmental 
decision- making and are used as inputs to environmental models such as land surface models and hydrological 
models (Chaney et al., 2019; Zhu & Mackay, 2001). Digital soil mapping (DSM) algorithms are widely used for mod-
eling soil– environment relationships and predicting soil maps based on soil sample data and environmental covari-
ate data (McBratney, Mendonça Santos, & Minasny, 2003; Minasny & McBratney, 2016; Zhu et al., 2015). With the 
great advancements in earth observation technologies such as remote sensing, environmental covariates used for 
DSM are of increasingly fine spatial resolution (Chaney et al., 2016). Initiatives have also been started to compile 
and share soil sample databases across the globe (Batjes et al., 2017). These developments have made it possible 
to conduct fine- resolution DSM at national, regional, continental, or even global scales (Arrouays et al., 2014; 
Chaney et al., 2016; Hengl et al., 2017; Li, Malyshhev, & Sheviliakova, 2016; Ramcharan et al., 2018).

DSM at fine spatial resolutions over large areas involving large numbers of covariates and soil samples using 
sophisticated DSM algorithms demands high computing power. Some efforts have been made to address the com-
putational challenges facing the DSM community. Padarian, Minasny, and McBratney (2015) explored Google's 
cloud- based platform (i.e., Google Earth Engine, GEE) for DSM. GEE allows access to Google's cloud computing 
resources, Earth observation data (e.g., Landsat imagery) hosted on the cloud, along with built- in algorithms that 
take advantage of the parallel cloud computing resources. As a result, GEE is good for pre- processing the massive 
remote sensing imagery to derive environmental covariates for DSM. However, it is difficult to implement highly 
specialized DSM algorithms entirely using GEE's built- in algorithms (Padarian et al., 2015). Besides, GEE imposes 
various limits on users (e.g., the number of soil samples a user can upload). Researchers have also employed high- 
performance computing (HPC) to accelerate DSM. For example, Jiang et al. (2016) developed a cyber platform 
for DSM using an HPC server as the computing back- end where the DSM algorithms were implemented using 
OpenMP (Open Multi- Processing) and run on multi- core central processing units (CPUs). In mapping soil series 
at 30- m resolution over the contiguous United States, Chaney et al. (2016) divided the large mapping area into 
smaller non- overlapping sub- areas and dispatched DSM tasks in each sub- area to the computation nodes of a 
supercomputer. However, not every DSM researcher or practitioner has access to HPC facilities (e.g., high- end 
computing server, supercomputer). For instance, early- career faculty and graduate researchers may not have the 
funds to build dedicated HPC facilities or pay for HPC services provided by third parties (e.g., cloud computing).

In recent years, graphics processing units (GPUs) have been widely used to accelerate spatial analyses (Tang, 
Feng, & Jia, 2015; Zhang, Zhu, & Huang, 2017). While multi- core CPUs place more emphasis on high performance 
on a small number of threads, many- core GPUs contain a large number of simpler processor cores (thousands or 
more) designed for a high degree of parallel processing. By exploiting data or task parallelism, GPUs can effec-
tively speed up geoscience algorithms by a factor of tens or even hundreds compared to serial CPU implementa-
tions (Tang et al., 2015; Zhang et al., 2017).

There are only few applications of GPU computing for DSM. Many DSM algorithms (for reviews see 
Grunwald, 2009; McBratney et al., 2003) are generic statistical or machine learning algorithms (e.g., multiple 
linear regression, decision tree) that are often available in software packages running on CPUs. For example, the 
R statistical software (R Core Team, 2013) supports parallel code execution through the foreach library (Calaway 
& Weston, 2017). The Scikit- learn machine learning package supports model training utilizing multiple CPUs 
(Pedregosa et al., 2012). Kriging and geographically weighted regression (GWR) are often used for DSM (McBratney 
et al., 2003; Minasny & McBratney, 2016). Nonetheless, parallel implementations of the GWR algorithm utilizing 
multiple CPUs (Li, Fotheringham, Li, & Oshan, 2019) and kriging algorithms utilizing GPUs (Cheng, 2013; Gutiérrez 
de Ravé, Jiménez- Hornero, Ariza- Villaverde, & Gómez- López, 2014; Shi & Ye, 2013) have mostly been applied in 
other domains. To the best of our knowledge, there are few if any studies using parallel GWR or kriging algorithms 
for DSM. Recently, deep learning neural networks (e.g., convolutional neural networks), which have been gaining 
recognition across many different fields, have also been used for DSM (Behrens, Schmidt, MacMillan, & Viscarra 
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Rossel, 2018; Wadoux, Padarian, & Minasny, 2018). Training deep learning models is computationally intensive 
and thus parallel computing resources on multi- CPUs or GPUs are exploited to speed up model training, for exam-
ple, using Google's TensorFlow (Abadi et al., 2016). Lastly, as aforementioned, some specialized DSM algorithms 
have been parallelized over multi- core CPUs (e.g., Jiang et al., 2016) or over supercomputer computing nodes 
(Chaney et al., 2016). Overall, there is a lack of implementations of DSM algorithms exploiting the massively par-
allel computing power of GPUs to speed up DSM applications.

Commodity desktop and laptop computers with multiple CPU cores and integrated and/or discrete graph-
ics cards (i.e., GPUs) are commonplace. Dedicated HPC facilities are also often composed of computing nodes 
equipped with CPUs and GPUs (Guan, Shi, Huang, & Lai, 2016; Shi, Lai, Hiang, & You, 2014; Shi & Ye, 2013). 
Effectively harnessing the heterogeneous computing resources on CPUs and GPUs for DSM would address the 
pragmatic challenge facing DSM researchers who have access to only limited computing resources, and showcase 
an advancement toward the idea of “personal high- performance geospatial computing” (Zhang, 2010). It also in-
forms better utilization of HPC for DSM.

This study aims to harness the heterogeneous computing resources on CPUs and GPUs for accelerated DSM. 
As an example, a parallel version of the iPSM (individual predictive soil mapping) algorithm (Zhu et al., 2015) 
representing the type of predictive soil mapping algorithms that is data-  and compute- intensive and highly paral-
lelizable was implemented in Python based on the PyOpenCL parallel programming library (Klöckner et al., 2012). 
Python is a high- level interpreted programming language that is dynamically typed (i.e., there is no need to spec-
ify data types for variables in the program; they are determined during run- time) and garbage- collected (Van 
Rossum, 1995). It features ease of use compared to low- level languages such as C/C++ (e.g., there is no need to 
deal with pointers and memory leaks) and high productivity, with many third- party packages available. For exam-
ple, the SciPy package provides comprehensive and fast tools for mathematics, science, and engineering (Jones, 
Oliphant, & Peterson, 2001). OpenCL (Open Computing Language) is a parallel programming standard for hetero-
geneous computing systems (Stone, Gohara, & Shi, 2010). The most prominent advantage of OpenCL over other 
parallel programming libraries such as OpenMP, MPI (Message Passing Interface), and CUDA (Compute Unified 
Device Architecture) is that it provides a unified programming interface for both CPUs and GPUs. Moreover, it is 
hardware neutral, meaning it supports processors from virtually any vendor, while OpenMP and MPI only support 
CPUs and CUDA only supports NVIDIA GPUs. PyOpenCL is a Python package that wraps the OpenCL C/C++ 
programming interface for Python and carries out GPU run- time code generation (Klöckner et al., 2012). It allows 
programmers to easily program CPUs and/or GPUs directly in Python with only minimal C/C++ coding.

The parallel implementation of iPSM using PyOpenCL, which is named PyCLiPSM in this study, runs on any 
multi- core CPUs and GPUs that support the OpenCL standard, no matter whether they are standard commodity 
computers or HPC nodes, or whether they are manufactured by Intel, AMD, or NVIDIA. PyCLiPSM can effec-
tively accommodate the diversity and heterogeneity of computing resources available to DSM researchers and 
practitioners. Using PyCLiPSM as an example, we advocate implementing more parallel DSM algorithms using the 
PyOpenCL framework for accelerated DSM.

2  | MATERIAL S AND METHODS

2.1 | The iPSM algorithm for DSM

iPSM (Zhu et al., 2015) is an algorithm specially designed for DSM and has been used in a wide range of DSM 
studies (An et al., 2018; Yang, Qi, Zhu, Shi, & An, 2016; Zeng et al., 2016; Zhang & Zhu, 2019; S.- J. Zhang, Zhu, 
et al., 2016). iPSM represents the type of geospatial algorithms which is data-  and compute- intensive and highly 
parallelizable.
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2.1.1 | Overview of iPSM

The inputs to iPSM are a set of environmental covariate layers and a set of geo- referenced soil samples with 
measured soil property values or observed soil class labels. The outputs are a soil property or class map and a 
prediction uncertainty map. iPSM uses the soil– environment relationship at each individual soil sample location 
to predict soils at unsampled locations, assuming that locations of similar environment conditions have similar 
soils. It is an application of the principles of the Third Law of Geography (Zhu, Lu, Liu, Qin, & Zhou, 2018) for soil 
spatial prediction. It imposes no specific requirements on sample size or the spatial configuration of soil samples 
(Liu, Zhu, Rossiter, Du, & Burt, 2020; Zhu et al., 2015). An overview of iPSM is provided below. Readers interested 
in full details of the algorithm are referred to Zhu et al. (2015). iPSM predicts soil property or soil class at a 
prediction location (raster cell) following a two- step procedure: computation of environmental similarity, followed 
by prediction of soil property or class and quantification of prediction uncertainty.

At the first step, the environmental similarity between the prediction location and a sample location is com-
puted for each individual environmental covariate. The overall similarity between the two locations on all covari-
ates is then determined based on individual similarities. The environmental similarity between prediction location 
j and sample location i on the lth covariate (continuous; ratio or interval), Sl

i,j
, is calculated as:

where Vl

i
 and Vl

j
 denote the value of the lth covariate at sample location i and prediction location j, respectively. SDl is 

the standard deviation of the covariate. SDl

i
 is the pseudo “standard deviation” of the covariate values from Vl

i
 (not from 

the mean) and is computed by:

where Vl

p
 is the value of the covariate at raster cell p, and m is the total number of raster cells in the mapping area. For 

categorical covariates (discrete; nominal or ordinal), the similarity is computed as:

The overall environmental similarity between prediction location j and sample location i with respect to all L 
covariates, Si,j, is then determined by taking the minimum of the environmental similarities on individual covariates:

Si,j values lie between 0 and 1, with a higher value indicating higher environmental similarity.
The environmental similarity between prediction location j and each of the n sample locations can be com-

puted following Equations (1– 4).
At the second step, the soil property value or soil class at the prediction location is determined based on its 

environmental similarities to the n sample locations. The following equation is used for predicting soil property:
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where T̂j is the predicted soil property value at location j, and Ti the measured soil property value at sample location 
i. For soil class prediction, the predicted soil class at location j, Ĉj, is assigned the observed soil class of the sample 
location whose environmental condition is most similar to location j:

where Ci is the observed soil class at sample location i. Finally, for both soil property and class prediction, the predic-
tion uncertainty at location j, Uj, is quantified as:

Uj ranges from 0 to 1, with higher values indicating higher levels of prediction uncertainty.
Applying the above two- step procedure for soil prediction at every raster cell in the mapping area (m cells) 

results in a soil property or class map. iPSM has been implemented in the SoLIMSolutions software package 
(solim.geography.wisc.edu), which runs on a single CPU thread, and in the CyberSoLIM online platform (Jiang 
et al., 2016), which utilizes multi- CPU threads for computation.

2.1.2 | Complexity analysis

iPSM is data-  and compute- intensive. If Equations (1) and (2) were followed literally, computing the environmental 
similarity between a prediction location and a sample location on one covariate would take O (m) steps, because 
computing the standard deviation and pseudo “standard deviation” (deviation from covariate value at the sample 
location) takes O (m) steps, where m is the number of raster cells in the covariate layer. As a result, the complexity of 
computing the overall similarity between the two locations on all L covariates (Equation 4) would be O (mL). Therefore, 
predicting soil property or class (and quantifying prediction uncertainty) at one raster cell based on n soil samples 
(Equation 5) would take O (mnL) steps. Finally, the complexity of predicting soil property or class at all m raster cells in 
the mapping area would be O

(
m2nL

)
. Thus, the run- time of the iPSM algorithm would be quadratic in the number of 

raster cells in the mapping area, and linear in the number of soil samples and the number of covariates.

2.1.3 | Optimization and parallelization opportunities

The above complexity analysis was for a “naïve” implementation of the iPSM algorithm. Note that the standard 
deviations and pseudo “standard deviations” of covariates are invariant to prediction locations; repetitively 
computing them at every prediction location is unnecessary. Optimizations can be adopted to avoid redundant 
calculations.

First, the standard deviations and means of the covariates, invariant to prediction locations, can be computed 
upfront in O (mL) steps. They need only be computed once over the course of the algorithm and can be treated 
as constants in further calculations. Second, the pseudo “standard deviation” of a covariate on one soil sample 
location can be computed based on the computed standard deviation and mean of that covariate, as demonstrated 
below:
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where SDl and Vl are the standard deviation and mean of the covariate. Therefore,

Using Equation (9) to compute SDl

i
 takes only O (1) steps given the computed SDl and Vl values. As a result, 

computing the pseudo “standard deviations” of all L covariates on all n soil sample locations takes O (nL) steps. The 
pseudo “standard deviations” are also invariant to prediction locations and need only be computed once.

Utilizing the above optimizations, the complexity of computing environmental similarity following Equation (1) 
reduces from O (m) to O (1) given the computed SDl and SDl

i
 values. As a result, the complexity of predicting soil 

for all m raster cells reduces from O
(
m2nL

)
 to O (mnL). Altogether, the complexity of soil mapping using iPSM is 

O (mL) + O (nL) + O (mnL) = O (mnL), where the first two terms represent the complexity of computing the stan-
dard deviations, means, and pseudo “standard deviations” of covariates. The overall complexity is linear in the 
number of cells, the number of soil samples and the number of covariates.

iPSM is also highly parallelizable. Data and computation parallelism can be exploited to speed up the algorithm. 
Obviously, predicting soil at a prediction location is independent of predicting soils at other locations. As a result, 
the two- step procedure in iPSM for soil prediction can be conducted in parallel at all raster cells.

2.2 | Implementation of PyCLiPSM

The parallel iPSM algorithm with optimizations, namely PyCLiPSM, was implemented in Python using PyOpenCL 
(Klöckner et al., 2012). As argued in Section 1, PyCLiPSM effectively accommodates the diversity and 
heterogeneity of computing resources available to DSM researchers and practitioners while imposing a minimal 
burden of coding on them. PyCLiPSM should run on CPUs or GPUs that support the OpenCL standard. CPUs and 
GPUs manufactured by Intel, AMD, NVIDIA and Apple all support OpenCL. This subsection provides an overview 
and details of the implementation of PyCLiPSM.

2.2.1 | Implementation overview

PyCLiPSM involves the cooperation of host- side functionalities and the device- side kernel (Figure 1). The host is 
the CPU thread that controls the workflow of the algorithm. The device can be either CPUs or GPUs that carry out 
computing tasks dispatched from the host by executing kernel functions in parallel.

At the beginning of PyCLiPSM, the host reads in data (environmental covariates, soil samples) from files into 
its main memory. It then computes data statistics, including the standard deviations and means of the covariates 
and pseudo “standard deviations” of the covariates for the soil sample locations. Next, the host allocates memory 
on the device and copies data and statistics to device memory. After that, the host invokes a kernel function call. 
The device then uses data in device memory as inputs to execute the kernel function in parallel for soil prediction 
and writes results in device memory. Each thread is responsible for computing soil property or soil class and uncer-
tainty at one prediction location at a time. After the kernel execution completes, the host copies the results from 
device memory to main memory and writes the results to files. All tasks carried out by the device are put in a com-
mand queue. The low- level task mapping and task scheduling are transparent from PyCLiPSM as they are handled 
automatically by the underlying PyOpenCL library. Such simplicity of parallelization is a strength of PyCLiPSM.
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2.2.2 | Implementation details

All the host- side functionalities were implemented in the Python programming language (version 2.7) based on 
the PyOpenCL package (https://pypi.org/proje ct/pyopencl). Only the kernel function executed on the device was 
written in C. The source code of PyCLiPSM can be freely obtained from GitHub (https://github.com/Guimi ng/
PyCLiPSM) under MIT license.

Data structures
The geographic coordinates and soil property values (or soil class labels) observed at soil sample locations were 
stored in comma- separated values (CSV) files. CSV files can be easily read and parsed using Python. Covariate 
raster data layers were stored in GeoTIFF files and masked to the same geographic extent. GeoTIFF files can be 
read and written using the Python wrapper of the Geospatial Data Abstraction Library (GDAL; https://pypi.org/
proje ct/GDAL). PyCLiPSM provides specially designed Python classes to represent and manipulate soil sample 
data and covariate data.

Covariate raster layers were read in and stored as two- dimensional arrays in the main (host) memory. Soil 
sample locations were overlaid with the covariate layers and covariate values at the sample locations were then 

F I G U R E  1   Overview of PyCLiPSM

https://pypi.org/project/pyopencl
https://github.com/Guiming/PyCLiPSM
https://github.com/Guiming/PyCLiPSM
https://pypi.org/project/GDAL
https://pypi.org/project/GDAL
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extracted. The extracted covariate values were stored in a 2D array where rows correspond to sample locations 
and columns correspond to covariates. This 2D array was then flattened to a 1D array (row major) and copied to 
device memory using the Buffer function in PyOpenCL.

Covariate layers also need to be copied to device memory for soil prediction. As the shape of the mapping 
area can be non- rectangular, raster cells (elements in the 2D arrays) outside of the mapping area would be filled 
with NODATA values where no soil prediction is made. Copying such 2D arrays with NODATA values altogether 
to device memory is unnecessary and would be a waste of resources. Thus, NODATA values in the 2D array of 
each covariate were stripped off and the remaining data values were flattened into a 1D array (row major). Note 
that the original 2D raster can be reconstructed based on data values in the 1D array and ancillary information 
(e.g., positions of NODATA values in the raster) maintained in the host- side Python class designed to manipulate 
raster layers. The resulting 1D arrays, each representing one covariate layer, were column- stacked to form a 2D 
array where rows correspond to raster cells (prediction locations) and columns correspond to covariates. Finally, 
this 2D array was flattened into a 1D array (row major) and copied to device memory using the PyOpenCL Buffer 
function. The array operations (e.g., stack, flatten) were performed very efficiently using functions provided by 
Numpy (Harris et al., 2020), a Python package that provides efficient algebraic operations on arrays and matrices.

Computing statistics
Given the 2D array containing values of covariates at all prediction locations (raster cells) (NODATA stripped off) 
and the 2D array containing values of covariates at soil sample locations (prior to being flattened into 1D arrays) 
on the host, covariate statistics (i.e., standard deviations, means, and pseudo “standard deviations” for sample 
locations) were computed by the host- side code using efficient Numpy built- in functions. The computed statistics 
were then copied to device memory using the PyOpenCL Buffer function.

Memory considerations
When soil mapping is conducted at fine spatial resolutions and/or over large areas (i.e., large numbers of prediction 
locations), the volume of covariate data may be too large to fit into host memory. In such cases, covariates for the 
whole mapping area cannot be read into host memory all at once. To address this challenge, the mapping area 
was divided into tiles and only one tile was read in at a time by the host for soil prediction. The dimension of a tile 
can be specified by the user or automatically determined based on the amount of host memory available (Section 
3.5). A caveat is that, when reading covariates in tiles, covariate statistics (means and standard deviations) cannot 
be computed. Instead, the statistics were read from the metadata of GeoTIFF files, if pre- computed values were 
available, or computed on the fly using the GetStatistics function in GDAL.

The device, especially when a GPU is used, usually has even more limited memory space than the host. The 
data volume of covariates for the whole mapping area (or a tile of the mapping area) may exceed the device 
memory limit. To overcome this limitation, the 2D array containing values of covariates at all prediction locations 
(NODATA stripped off) were divided into chunks, each containing certain number of rows (each row represents 
one prediction location). Each chunk of data was then flattened into a 1D array and copied to device memory 
for soil prediction. This process was repeated until all chunks of data were processed, or in other words, soil was 
predicted at all prediction locations (Figure 1). The size of each data chunk (i.e., number of rows) was determined 
by considering the device memory size and the size of each row of data.

Kernel function
Soil prediction at one prediction location (raster cell) is independent of soil predictions at other locations. Therefore, 
a kernel function can be invoked by the host to execute on the device (multi- core CPU or GPU) for predicting soil 
at many prediction locations concurrently. Figure 2 shows the pseudo code of the kernel function implementing 
the iPSM algorithm for soil prediction. The actual kernel function was written in C. Large numbers of threads on 
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F I G U R E  2   Pseudo code of the kernel function implementing the iPSM algorithm
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the device execute the kernel function in parallel to perform soil prediction at prediction locations concurrently. 
Each thread takes data in the device memory as inputs and writes the results back to device memory.

2.3 | Computation performance evaluation

2.3.1 | Variants of the iPSM algorithm

The iPSM algorithm was implemented/configured into variants that differ in terms of the parallel programming 
library in use, computing device, number of computing threads, and optimization (Table 1). Besides using 
PyOpenCL, iPSM was also implemented using pathos.multiprocessing, a native Python parallel programming 
library for exploiting computing power on CPUs (https://pypi.org/proje ct/pathos). The sole purpose is to compare 
the performance of CPU multi- threading implemented using Pathos against that using PyOpenCL. Evaluating 
the computation performance of these algorithms allows us to examine the effects of the proposed optimization 
and parallelization strategies (Section 2.1.3) and how computation performance is impacted by the underlying 
programming library, computing device, and computing threads involved.

2.3.2 | Computing platforms

The computation performance of the variants of iPSM (e.g., run- time) was tested on two computing platforms with 
distinct computing capabilities, operating systems, and hardware vendors (Table 2). One is a high- end desktop 
workstation running Ubuntu equipped with an NVIDIA graphics card. The other is a standard commodity laptop 
computer running Windows with an AMD graphics card.

2.3.3 | Performance metrics

Execution times of the algorithms were recorded as a computation performance measure. Reported execution 
time is the average execution time of 10 runs in all experiments. The total execution time was broken down 
into time spent on reading data from/writing data to disk drive (read/write), transferring data between host and 

TA B L E  1   Variants of the iPSM algorithm that differ in parallel programming library, computing device, 
number of computing threads, and optimization

Library Device # of threads Optimization Algorithm variant

PyOpenCL GPU Many- thread Optimized CL_GPU

Naïve CL_GPU_NAIVE

CPU Multi- thread Optimized CL_CPU

Naïve CL_CPU_ NAIVE

Single- thread Optimized CL_CPU1

Naïve CL_CPU1_ NAIVE

Pathos CPU Multi- thread Optimized MP_CPU

Naïve MP_CPU_ NAIVE

Single- thread Optimized MP_CPU1

Naïve MP_CPU1_ NAIVE

https://pypi.org/project/pathos
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device (data transfer) and actual soil prediction (compute). Read/write and/or data transfer are costs common to 
all variants of the algorithm. Therefore, compute time was primarily compared (e.g., to compute speedup ratio) to 
reveal differences in computation performance among the algorithms.

The accuracy of the predicted soil map was not formally assessed in experiments in this study (except for 
Section 3.3). The sole purpose of this study was to evaluate the computation performance of the algorithms and 
how the performance was affected by various factors such as soil sample size, the number of covariates, and soil 
mapping spatial resolution. Evaluation of prediction accuracy of iPSM and how it may be affected by such factors 
is not the goal of this study. Nonetheless, correctness of the algorithms was examined by checking to ensure soil 
maps predicted from all variant algorithms were the same. The prediction accuracy of iPSM has been extensively 
examined in other studies. Readers interested in this topic are referred to Yang et al. (2016), Zeng et al. (2016), 
Zhang, Huang, Zhu, and Keel (2016), Zhu et al. (2018), and Zhang and Zhu (2019). In particular, An et al. (2018) 
documented the accuracies of mapping A- horizon soil organic matter (SOM) content in the same study area using 
the same data set (Section 2.3.4).

2.3.4 | Experimental data and design

DSM experiments were conducted in Anhui Province (134,000 km2) in eastern China to evaluate the computation 
performance of the variants of iPSM. In the study area, there were 282 soil sample locations (Figure 3) at which 
soil samples were taken and the SOM content (g/kg) of A- horizon soil was measured (mean 24.69 g/kg; standard 
deviation 13.32 g/kg). Among the sample locations, 129 were designed based on expert knowledge and 153 
following a stratified random sampling strategy (An et al., 2018). A set of 12 environmental covariates were 
used for mapping A- horizon SOM in the study area, including annual average temperature, annual accumulated 
temperature above 10°C, annual average precipitation, annual average evaporation, arid index, moisture index, 
slope gradient, planform curvature, profile curvature, topographic wetness index, parent material, and normalized 
difference vegetation index. The covariate data layers were at 90- m spatial resolution. Further details of the soil 
sample data and covariate data can be found in An et al. (2018).

Soil sample sets of varied sample sizes were obtained by randomly selecting samples from the 282 soil sam-
ples and were used in soil prediction experiments to examine impacts of soil sample size on the computation 
performance of the algorithms (Section 3.3). For some performance evaluation experiments where a larger 
number of soil samples were needed, synthetic soil samples were generated and used (Section 3.4). In addition, 
covariates of varied spatial resolution (i.e., covariate cell size) were used in soil prediction experiments to in-
vestigate the impacts of mapping spatial resolution on computation performance (Section 3.3). To this end, the 
covariates at 90- m spatial resolution were resampled to 1,000- , 450- , 270- , 30- , and 10- m resolutions (Table 3). 
Note that at 10- m resolution, the volume of the covariate data (117 GB) exceeds the amount of memory avail-
able even on the desktop workstation (64 GB). Moreover, to assess the effects of the number of covariates, 
subsets of the 12 covariates containing varied numbers of covariates were used in soil prediction experiments 
(Section 3.3).

The above experimental design is sufficient for evaluating the impacts of the various factors on the computa-
tion speed of PyCLiPSM. iPSM essentially predicts the soil property value at a prediction location as a weighted 
average of the soil property values at the sample locations. Thus, there are no model parameters to optimize in 
this process. For some other digital soil mapping algorithms (e.g., random forest) where model training involves 
iteratively optimizing model parameters, additional factors may also affect computation speed (minimal training 
accuracy, relative importance of covariates, sample representativeness, etc.) as they would influence the rate of 
convergence.
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3  | RESULTS AND DISCUSSION

3.1 | Effectiveness of optimization

Soil prediction experiments were conducted on a small data set to evaluate the effectiveness of the optimization 
(Section 2.1.3). The small data set was intentionally designed so that the naïve algorithms could complete within a 
reasonable time- frame and their execution times could be recorded. Five soil samples randomly selected from the 
full set of samples and covariates at 1 km resolution were used in these experiments using variants of the iPSM 
algorithm (Section 2.3.1) running on the desktop workstation.

F I G U R E  3   Spatial distribution of soil samples in the study area
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The proposed optimization effectively accelerated soil prediction using iPSM (Table 4). Naïve implementations 
of iPSM were very slow even on this small data set. For example, the PyOpenCL- based implementation without 
optimization running on a single CPU thread (CL_CPU1_NAIVE) on the desktop workstation took 28.5 min in total. 
Optimized iPSM algorithms were up to orders of magnitude faster than naïve implementations. For instance, in 
terms of compute time, the PyOpenCL- based algorithm with optimization running on a single CPU thread (CL_
CPU1) took only 0.12 s, which was over 14,000 times faster than CL_CPU1_NAIVE. The optimized algorithm 
running on GPU (CL_GPU) was 18 times faster than the naïve algorithm (CL_GPU_NAIVE). The Pathos- based 
algorithm without optimization running on multiple CPU threads (MP_CPU) was 136 times faster than the naïve 
algorithm (MP_CPU_NAIVE).

It was also observed that iPSM implementations based on PyOpenCL were up to hundreds of times faster 
(in terms of compute time) than those based on Pathos (Table 4). The PyOpenCL- based implementation running 
on multiple CPU threads (CL_CPU) was 20 times faster than the implementation based on Pathos multiprocess-
ing (MP_CPU) running on the same CPUs with the same number of threads. The PyOpenCL- based implemen-
tation running on a single CPU thread (CL_CPU1) was 325 times faster than the Pathos- based implementation 
(MP_CPU1).

Pathos multi- processing was much slower than PyOpenCL, possibly for several reasons. First, Python is an 
interpreted language, meaning it executes with the help of the interpreter instead of the compiler, which slows 
it down. Therefore, conducting compute- intensive tasks using Python code is inefficient. In contrast, the kernel 
function used in PyOpenCL was written in C/C++ and was compiled before execution. Second, when using multi- 
threading in Python, the global interpreter lock (GIL) can degrade performance as it protects access to Python 

TA B L E  3   Covariates used for soil mapping at varying spatial resolutions

Resolution (m) 1,000 450 270 90 30 10

Rows 582 1,293 2,154 6,463 19,389 58,167

Columns 450 1,001 1,668 5,004 15,012 45,036

Files size (compressed 
GeoTIFF)

6 MB 26 MB 71 MB 504 MB 3 GB 18 GB

Data size in memory 12 MB 59 MB 164 MB 1.4 GB 13 GB 117 GB

Prediction cells 1.3 × 105 6.5 × 105 1.8 × 106 1.6 × 107 1.5 × 108 1.3 × 109

TA B L E  4   Execution time (seconds) of variants of the iPSM algorithm. Covariates at 1 km resolution and five 
soil samples were used in the experiments

Algorithm Total Read/write Data transfer Compute

CL_GPU 0.48 0.16 0.00 0.32

CL_GPU_NAIVE 6.19 0.15 0.00 6.04

CL_CPU 0.76 0.14 0.00 0.62

CL_CPU_NAIVE 22.93 0.17 0.01 22.76

CL_CPU1 0.26 0.14 0.00 0.12

CL_CPU1_NAIVE 1,712.49 0.14 0.01 1,712.35

MP_CPU 12.77 0.16 0.00 12.61

MP_CPU_NAIVE 1,779.47 0.15 0.00 1,779.31

MP_CPU1 39.18 0.14 0.00 39.04

MP_CPU1_NAIVE 5,339.71 0.18 0.00 5,339.53
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objects, preventing multiple threads from executing Python bytecodes at once (Beazley, 2010). Parallel computing 
using PyOpenCL is not susceptible to Python GIL and thus can be much more efficient.

3.2 | Effectiveness of parallelization

Soil prediction experiments were conducted to evaluate effectiveness of the parallelization of iPSM (Section 
2.1.3). The 129 expert soil samples and covariates at 90 m spatial resolution were used for soil prediction using 
PyCLiPSM running sequentially on a single CPU thread (CL_CPU1) and running in parallel on GPU (CL_GPU) and 
multiple CPU threads (CL_CPU) (16 and 4 threads on the desktop and laptop, respectively). Execution times were 
recorded and compared. Accuracy of the predicted soil map (Figure 4) was validated by comparing predicted 
and observed SOM content values at the 153 stratified soil sample locations. The mean absolute error (MAE) 
computed based on the validation soil samples was 8.74 g/kg, which is consistent with the accuracies reported in 
An et al. (2018).

Parallelizing iPSM using PyOpenCL effectively accelerated the algorithm (Table 5). Soil prediction using par-
allelized iPSM was much faster than using the sequential implementation. On the desktop, CL_GPU and CL_CPU 
were 27.3 and 21.2 times faster (in terms of compute time) than CL_CPU1, respectively. On the laptop computer, 
CL_GPU and CL_CPU were 35.8 and 22.5 times faster than CL_CPU1, respectively.

All variants of PyCLiPSM (CL_CPU1, CL_CPU and CL_GPU) on the desktop were about 7– 10 times faster (in 
terms of compute time) than on the laptop (Table 5). This is because the desktop has a larger number of more 
powerful CPU cores and a more advanced GPU. Moreover, read/write was about 7 times faster and data transfer 
about 6 times faster on the desktop. This was expected given that the standard commodity laptop computer does 
not have as fast storage and data bandwidth as the high- end desktop workstation.

F I G U R E  4   Maps of predicted A- horizon soil organic matter content and prediction uncertainty
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3.3 | Impacts of soil samples, covariates, and mapping resolution

Soil sample subsets of varied sample size and subsets of the covariates at various spatial resolutions were used 
in soil prediction experiments on the desktop workstation to investigate their impacts on the computation 
performance of PyCLiPSM. Experiments show that the responses of PyCLiPSM computation speed to these 
factors are consistent with the complexity analysis of the algorithm (Section 2.1.2), as detailed below.

The compute time of PyCLiPSM increased linearly as soil sample size increased (Table 6). The speedup ratio, 
computed as the ratio of the compute time on a single CPU thread to that on multiple CPU threads or on a GPU 
(G. Zhang et al., 2017; G. Zhang, Huang, et al., 2016), increased for larger sample sizes. The speedup ratio of 
CL_CPU increased from 13.2 to 27.7 and that of CL_GPU increased from 14.2 to 40.6 when sample size increased 
from 50 to 250. Note that the speedup ratio of CL_CPU at sample size 100 and beyond exceeded linear speedup 
(i.e., 16 on the desktop workstation with 16 CPU threads). This may be due to the different kernel functions used 
by CL_CPU1 and CL_CPU. The single- thread kernel function contains a nested loop (i.e., the outer loop over raster 
cell and the inner loop over sample locations) while the multi- thread kernel function contains only the inner loop. 
The latter could be turned into more efficient run- time code by PyOpenCL (Klöckner et al., 2012).

As for the impacts of the covariates, the read/write, data transfer, and compute time of PyCLiPSM increased 
linearly as more covariates were used for soil prediction (Table 7). Greater speedup ratios were achieved by run-
ning PyCLiPSM on multiple CPU threads and on GPUs over larger number of covariates. The speedup ratio of 
CL_CPU increased from 21.4 to 29.4 and speedup of CL_GPU increased from 28.3 to 49.5 when the number of 
covariates increased from 2 to 12.

Regarding mapping resolution, the execution time of PyCLiPSM increased approximately quadratically as 
mapping resolution improved (Table 8). For example, when mapping resolution improved from 90 to 30 m (by 
a factor of 3), the read/write, data transfer, and compute time all approximately increased by a factor of 9. 
This was expected, given that the total number of prediction cells has an inverse quadratic relation with cell 
size. The speedup ratio generally increased on finer mapping resolutions. When the cell size decreased from 
1,000 to 30 m, the speedup ratio of CL_GPU and CL_CPU increased from 7.8 to 45.5 and from 13.7 to 29.0, 
respectively.

3.4 | Scalability to large number of soil samples

Synthetic soil samples were used to evaluate the scalability of PyCLiPSM to larger numbers of soil samples (the 
282 real soil samples were too small a sample size for this evaluation). Three sets of synthetic soil samples of varied 

TA B L E  5   Execution time (seconds) of PyCLiPSM. Covariates at 90 m resolution and 129 soil samples were 
used in the experiments

CL_GPU CL_CPU CL_CPU1

Desktop Total 14.76 16.27 154.55

Read/write 9.08 9.06 9.05

Data transfer 0.37 0.35 0.35

Compute 5.31 6.85 145.14

Laptop Total 105.35 128.08 1,402.03

Read/write 66.08 66.08 65.69

Data transfer 2.04 2.68 2.71

Compute 37.24 59.32 1,333.63
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TA B L E  6   Impacts of soil sample size on compute time (seconds) and speedup ratio of PyCLiPSM. Covariates 
at 90 m resolution were used in the experiments

Sample size 50 100 150 200 250

Compute time CL_GPU 4.17 4.79 5.36 6.09 6.67

CL_CPU 4.50 5.88 7.18 8.44 9.76

CL_CPU1 59.25 110.87 163.33 219.89 270.56

Speedup ratio CL_GPU 14.21 23.15 30.47 36.11 40.56

CL_CPU 13.16 18.86 22.75 26.06 27.72

TA B L E  7   Impacts of the number of covariates on execution time (seconds) and speedup ratio of PyCLiPSM. 
Covariates at 90 m resolution and 282 soil samples were used in the experiments

Number of covariates 2 4 6 8 10 12

CL_GPU Read/write 3.68 4.86 5.84 7.11 8.07 8.93

Data transfer 0.07 0.13 0.19 0.25 0.31 0.37

Compute 2.31 3.23 4.23 5.11 6.31 6.19

CL_CPU Read/write 3.68 4.84 5.80 7.09 8.04 8.80

Data transfer 0.07 0.13 0.18 0.24 0.30 0.35

Compute 3.05 4.65 6.22 7.80 9.32 10.40

CL_CPU1 Read/write 3.68 4.86 5.80 7.11 8.02 8.81

Data transfer 0.07 0.13 0.19 0.24 0.30 0.35

Compute 65.17 118.42 170.87 222.61 277.20 306.19

Speedup ratio CL_GPU 28.26 36.65 40.38 43.58 43.90 49.47

CL_CPU 21.39 25.48 27.46 28.53 29.74 29.44

TA B L E  8   Impacts of mapping spatial resolution on execution time (seconds) and speedup ratio of PyCLiPSM. 
Two hundred eighty- two soil samples were used in the experiments

Mapping resolution 1,000 m 450 m 270 m 90 m 30 m

CL_GPU Read/write 0.22 0.84 1.08 8.93 76.98

Data transfer 0.00 0.00 0.04 0.37 3.25

Compute 0.34 0.51 1.00 6.19 60.71

CL_CPU Read/write 0.22 0.84 1.08 8.80 76.93

Data transfer 0.00 0.02 0.04 0.35 3.14

Compute 0.19 0.46 1.18 10.43 95.10

CL_CPU1 Read/write 0.22 0.84 1.08 8.81 76.96

Data transfer 0.00 0.02 0.04 0.35 3.17

Compute 2.67 12.30 34.00 306.19 2,761.41

Speedup ratio CL_GPU 7.78 24.18 34.11 49.47 45.48

CL_CPU 13.72 26.47 28.79 29.35 29.04
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size (n = 1,000, 2,000 and 5,000) were generated by randomly selecting locations from the study area. SOM 
content values at these locations were extracted from the SOM content map predicted based on the 129 expert 
soil samples (Figure 4) and were treated as the “observed” SOM content values. Soil prediction experiments using 
the synthetic samples and covariates at three different resolutions (270, 90, and 30 m) were conducted on the 
desktop workstation. The compute times for PyCLiPSM running on a GPU (CL_GPU), multiple CPU threads (CL_
CPU), and a single CPU thread (CL_CPU1) were recorded, based on which the speedup ratios were computed and 
compared.

The speedup ratio of CL_GPU varied from about 60 to 80, increasing as soil sample size increased and as 
mapping resolution improved (Table 9 ). The speedup ratio of CL_CPU was between 35 and 40, in a smaller range 
compared to CL_GPU. It increased as soil sample size increased but remained relatively stable as mapping reso-
lution improved. The above observations suggest that PyCLiPSM running on GPUs is better at achieving massive 
speedups for soil mapping tasks at fine spatial resolutions involving large numbers of soil samples.

3.5 | Addressing input/output and memory constraints

When the data volume of the covariates exceeds available host memory, PyCLiPSM reads in covariate data one 
tile at a time for soil prediction (Section 2.2.2). Tile dimension greatly influences the speed of reading covariates. 
Covariate GeoTIFF files are stored in blocks on disk drive. Experiments show that setting tile dimension to 
multiples of the block size of the GeoTIFF files resulted in faster reading speed (Table 10) as the tile dimension 
coincides with the layout of the files on the disk drive. PyCLiPSM determines the default tile dimension based 
on this observation. Moreover, time spent on reading covariates is a significant portion of the total execution 
time of PyCLiPSM. To address the input/output (I/O) bottleneck, PyCLiPSM implemented an option for reading 
covariates using multiple threads concurrently where each thread reads in one covariate. Multi- thread reading 
can be faster than single- thread reading on large files or tiles (Table 10), but it consumes more memory space and 
incurs an additional overhead for thread management.

Covariate data residing in host memory for soil prediction were split into smaller chunks that can fit into 
device memory, and only one chunk was transferred to the device at a time for soil prediction (Section 2.2.2). 
Chunk size (i.e., the number of prediction locations in each chunk) is a critical parameter affecting the computation 
performance of PyCLiPSM. Experiments show that setting chunk size to multiples of the device maximum work 
item size resulted in faster computation (Table 11). With such a setting, the per- chunk workload aligns with the 
number of threads launched as a work group to execute kernel function concurrently; therefore, no threads are 
left idle waiting for other threads to finish computing. This heuristic was implemented in PyCLiPSM to determine 
the default chunk size.

Equipped with the above solutions addressing I/O and memory constraints, PyCLiPSM can be used for DSM 
over large areas at fine spatial resolutions. It was applied to conduct soil prediction using the 10 m covariates 
(117 GB) and all 282 soil samples on the desktop (64 GB memory) and the laptop (8 GB memory). On the desktop, 
it took about 24 min (total execution time) using the GPU as the computing device and 29 min using the CPU 
(Table 12). On the laptop, it took roughly 2 and 3.4 hr using the GPU and the CPU, respectively.

TA B L E  1 0   Impact of tile dimension and using multi- thread on time (seconds) spent on reading covariates 
(10 m resolution) into host memory on the desktop workstation

Raster dimension
GeoTIFF file 
block size Tile dimension Single- thread Multi- thread

45,036 × 58,167 45,036 × 128 45,036 × 3,584 (3584 = 128 × 28) 590.45 515.06

12,704 × 12,704 1,195.51 570.92
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4  | CONCLUSIONS

As the experimental results have demonstrated, the optimization and parallelization implemented in PyCLiPSM 
effectively speed up DSM tasks. Compared to the non- optimized version, the optimized version was tens of 
thousands of times faster. The parallel version was tens of times faster than the sequential version. Moreover, 
parallelizing the iPSM algorithm using PyOpenCL was much more effective than using Pathos in exploiting the 
computing power on multi- CPUs to speed up DSM. The PyOpenCL version was hundreds of times faster than the 
Pathos version. DSM tasks at a finer mapping spatial resolution, over a larger mapping area, or involving a larger 
number of soil samples and covariates often demand more computing power. With the acceleration brought by 
PyCLiPSM, such DSM tasks can be conducted efficiently. It was observed in the experiments that, for large DSM 
computing tasks, running PyCLiPSM on GPUs can bring a higher level of acceleration than on multi- core CPUs due 
to the massively parallel computing power on GPUs.

Additional enhancements could be implemented to further improve PyCLiPSM. First, I/O can still be a bottle-
neck for PyCLiPSM, although the compute- intensive parts of the algorithm have been greatly accelerated through 
optimization and parallelization. When reading very large covariate data, read/write can take up over 50% of the 
total execution time even using multi- thread reading (Section 3.9). Thus, one area of enhancement is to improve 
I/O efficiency for PyCLiPSM. Second, PyCLiPSM currently can utilize heterogeneous computing environments 
with distinct computing resources (e.g., the kernel function runs on either multi- core CPU or GPU). It does not 
fully harness the heterogeneous computing resources in the same environment. Future enhancements could ex-
tend PyCLiPSM to exploit computing power on multi- core CPUs and GPUs at the same time, in a similar way to 
that presented in Wang, Guan, and Wu (2017).

The most prominent features of PyCLiPSM are its ease of use and its compatibility with heterogeneous com-
puting environments. PyCLiPSM was implemented using the user- friendly and cross- platform Python language 

TA B L E  11   Impact of data chunk size on PyCLiPSM compute time (seconds) on the desktop workstation. 
Covariates at 90 m resolution (16,302,679 prediction locations) and 282 soil samples were used in the 
experiments

Device
Max. work 
item size

1 chunk 2 chunks

Chunk size
Compute 
time Chunk 1 size

Chunk 2 
size

Compute 
time

GPU 1,024 16,302,679 86.34 16,302,080 (1,024 × 15,920) 599 6.19

CPU 8,192 16,302,679 39.30 16,302,080 (8,192 × 1,990) 599 10.43

TA B L E  1 2   Execution time (seconds) of PyCLiPSM. Covariates at 10 m resolution and 282 soil samples were 
used in the experiments

CL_GPU CL_CPU

Desktop Total 1,402.39 1,740.62

Read/write 781.28 835.92

Data transfer 30.14 28.57

Compute 590.98 876.12

Laptop Total 7,028.33 12,036.95

Read/write 3,637.24 3,737.80

Data transfer 138.31 166.01

Compute 3,252.78 8,133.15
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based on the PyOpenCL parallel programming library. It can therefore run on any operating system (e.g., Windows, 
Linux, MacOS) and exploit computing power on multi- core CPUs and GPUs manufactured by virtually any vender 
provided that they support the OpenCL standard. Users can easily adapt PyCLiPSM to meet their own needs with 
basic Python coding knowledge and minimal C/C++ coding skills. The free and open- source PyCLiPSM provides 
a framework for implementing other geospatial algorithms using PyOpenCL. It offers specially designed Python 
classes for representing and manipulating soil samples and covariates and is extensible to accommodate various 
data formats. The tiled reading strategy implemented in PyCLiPSM is generally applicable to handling large vol-
umes of covariate data. It also establishes the workflow of implementing geospatial algorithms using PyOpenCL. 
For implementing other algorithms, one need only analyze the parallelism within the algorithms and implement 
kernel functions accordingly.

As demonstrated in the experiments, PyCLiPSM can accelerate DSM tasks on high- end computing worksta-
tions as well as commodity personal computers that have distinct computing capabilities. It showcases the advo-
cacy of “personal high- performance geospatial computing” (Zhang, 2010) in the DSM application domain. Using 
PyCLiPSM as an example, we advocate implementing more parallel geospatial algorithms based on the PyOpenCL 
framework toward harnessing heterogeneous computing resources available to researchers and practitioners for 
accelerated geospatial analysis.
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